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Mutual diffusion in the contact melting of ionic crystals in a temperature 
gradient field is analyzed. 

Technological processes associated with mutual diffusion of ions in contact melting may 
often occur in an inhomogeneous temperature field. It is important here to know what in- 
fluence.the operating factor has on the ion distribution in the diffusion zone. It is known 
that the electrical fields lead to pronounced change in the kinetics of contact melting in 
ionic crystals [1-3] and, taking account that electrical, thermal, and mass transfer are 
closely interconnected in this process, changes may also be expected when a temperature- 
gradient field is imposed. 

To solve this problem, contact melting in nonsteady diffusion conditions [4, 5] when a 
temperature gradient is applied in the experimental region is analyzed and the numerical 
results obtained are compared with the experimental results for the given system. If con- 
vection in the melt is neglected, which holds for the conditions under analysis, the tem- 
perature and concentration distributions in the given zone may be described by differential 
equations on the basis of the mass and energy conservation laws [6] 

07' = div (~, grad T + D" grad c), (1 )  
Ot 

Oc 
- -  = div (D' grad T + D grad c). (2 )  

Ot 

Using the fusibility diagram of the system here, as in [7], the boundary and initial condi- 
tions may be written in the form 

D Oc_._~' = c (zi-a,1, t) v; D O__.._.~c = c (zi,~, t)v; ( 3 )  
Ox Ox 

T (z i - l , , ,  t) = Tx (t); T (zi,2, t) = T~ (t); ( 4 )  

c (x, 0) = ac o (x); T (x, 0) = bTo (x), (5 )  

where zi_ l < x < zi; c(zi_1, I, t) and c(zi,2, t) are determined from the fusibility diagram 
of the system; ~i-l,1 = Ki-1,1V~, zi,2 = Ki,2~ are the coordinates of the left-hand and 
right-hand interphase boundaries; v = dz/dt, i = i, ..., n. 

Equations (i) and (2) and the conditions in Eqs. (3)-(5) give the formulation of the 
problem for each position of the boundary determined by the index i. Calculation of the con- 
centration distribution entails simultaneous solution of Eqs. (I) and (2). First, the tem- 
perature distribution is determined from Eq. (i); the term D" grad c may be neglected here, 
in view of the smallness of D", and, substituting the resulting temperature field into Eq. 
(2), the desired concentration distribution is determined for a definite temperature gra- 
dient in the melt and time of the experiment. Since nonsteady diffusional conditions are 
characterized by a parabolic law of liquid-phase growth [4], the temperature gradient acting 
on the melt at a given time will change. The change in temperature gradient, in turn, will 
change the limiting concentrations and hence also the concentration profile in the liquid 
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Fig. 1 Fig. 2 
Fig. i. Fusibility diagram of the system KNO~-NaNOm on which a 
temperature gradient is imposed; c, mol.% KNO3; t, ~ 

Fig. 2. Concentration distribution of ions in the contact zone: 
i) time of experiment t = 600 sec; 2) 1800; 3) 3000; x, mm. 

diffusion zone. Therefore, finding the concentration distribution of the elements in the 
diffusion zone at each moment of the time entails knowing the relation between the temper- 
ature and the concentration of the elements at the phase boundaries. Since equilibrium is 
established at the crystal-melt phase boundaries at each moment of time, the limiting con- 
centrations of elements there may be determined using the state diagram of the system. Thus, 
in Fig. 1 it is shown that the temperatures T~ and T~ correspond to the concentrations c~ 
and c~ and the temperatures T~ and T~ to the limiting concentrations c~ and c~. Analogous 
constructions may be performed for other temperature gradients. This problem may be solved 
by numerical methods. These methods were used earlier in analyzing the concentration distri- 
bution in the contact melting of ionic crystals [7, 8]. The initial equations are approxi- 
mated by a balance method at the points of a shifted grid [9]. As a result of all the 
successive transformations, a finite-difference analog of the problem to be solved is obtained. 
The resulting difference scheme is realized by the fitting method; the concentration depen- 
dence of the elements in the contact zone for the give time step is obtained here. Higher 
accuracy in the calculations is obtained using the iterative method. Each time step is ac- 
companied by movement of the boundary points over the spatial grid; the new position of the 
boundary then establishes new boundary conditions calculated from the fusibility diagram. 
Then the temperature field is again calculated from the heat-conduction equation and the con- 
centration profile from the thermodiffusion equation. The calculation continues until one 
of the boundaries reaches the end of the sample. Programs are written in FORTRAN, and cal- 
culations are performed on an EC 10-35 computer. A sample (length 0.001 m) of the system 
KNO 3-NaNO 3 with an initial gradient over the solid phase of i00 deg/cm is chosen for ana- 
lysis. When liquid phase appears, temperatures T l = 543~ and T= = 513~ and concentrations 
c 2 = 24 mol.% and c 3 = 62.2 mol.% are established at the phase boundaries. Since the mutual 
diffusion coefficient in the melt is of the order of D = i0 -s cmm/sec, and the Soret coeffi- 
cient s T = D'/D = i0-~-i0 -5 deg -I, the thermodiffusion coefficient of the ions is in the 
range D' = i0-8-i0 -l~ cm2/sec.deg. It is evident from Fig. 2 that the concentration distri- 
bution of the ions in the contact zone is complex in character. The profile is distinguished 
by clear nonlinearity and depends on the time of the experiment to a considerable extent. 
This distribution is evidently explained by the change in velocity of the phase boundaries 
and hence in concentration at the phase boundaries and near them. The reduction in temper- 
ature at one boundary of the sample is accompanied in the given case by a decrease in the 
velocity of this boundary and the concentration there, and the temperature increase at the 
other boundary by increase in the velocity of the phase boundary and the corresponding con- 
centration. This behavior of the concentration at the boundaries also leads to enrichment 
of one part of the sample, and impoverishment of another, by the diffusing ions. Change in 
the initial temperature gradient over the sample is also accompanied by change in the concen- 
tration distribution: the larger the gradient, the largerthe experimental and theoretical 
enrichment and impoverishment of regions of the sample by the ions. 

NOTATION 

T, temperature; t, time; %, thermal conductivity; D', D", D, thermodiffusion coefficient, 
Dufour coefficient, and diffusion coefficient; c, ionic concentration; Ki, coefficient taking 
account of the velocity of the phase boundaries; Zi,k, coordinates of points of the shifted 
grid; v, rate of contact melting. 
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STEFAN PROBLEM IN THE THEORETICAL MODEL OF THE THERMAL INTERACTION 

BETWEEN A MOLTEN HEAT-LIBERATING MATERIAL AND FINITE WALLS 
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and Yu. I. Anoshkin 

UDC 621.039.588 

An approximate analytical solution of the one-dimensional Stefan problem is 
obtained for a single finite wall with constant heat fluxes at the boundaries. 
The conjugate problem for a system of molten heat-liberating material with 
two walls is solved by the finite-difference method. 

In investigating the safe operating conditions of fast reactors, it is necessary to ana- 
lyze the thermal interaction between the molten heat-liberating fuel and the casing walls 
of the malfunctioning and neighboring heat-liberating piles. Since this interaction is ac- 
companied by melting of the casing wall and motion of its front, the analysis involves solv- 
ing the problem of phase transition, called the Stefan problem. Accurate analytical solu- 
tions of the phase-transition problem are only known for individual cases of a semiinfinite 
media [I, 2]. An approximate analytical solution of the one-dimensional Stefan problem may 
be obtained for a single wall of finite thickness with constant heat fluxes at the bound- 
aries (qsl > qs2)- The solution is found by an integral balance method using the Lebenson 
method. 

Integrating the one-dimensional heat-conduction equation 

c(x, t) OT(x, t) 0 ~(x,  t) OT(x, t) ( 1 )  
Ot Ox Ox 

within the limits of the liquid and solid phases of the wall, and using the Stefan condition 

it is found that 

I 00T x=u<O+0-- OuSt) o r  + A s - -  -- Rm - " (2)  
- -  ~,z ~ x=v ( t ) -o  Ot ' 

v(t) 6 

Rm auat(t) _ q~l-  q,2 - -  cz j" aT (x,at t) ax - e8 .f" aT (X,at t). Ox (3) 
X~(t) y(t) 

Taking accoun t  of  the  downward r u n o f f  of  the  mol ten  wa i l  m a t e r i a l  under i t s  own we igh t ,  
it is assumed that the coordinate of the molten-layer boundary is determined by the expres- 
sion Xi(t) = by(t), where b is some constant (0 < b <_ i). 
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